PrimePrep[™] Plasmid DNA Extraction Kit

Introduction

*PrimePrep*TM Plasmid DNA Extraction Kit offer simple, rapid and cost-effective method for isolating plasmid DNA from bacterial cells. This kit is designed for the preparation of up 20 µg of high-purity plasmid DNA from 1 ~ 5 ml overnight *E. coli* culture in LB medium.

Plasmid DNA purified with mini kits is immediately ready for use. Phenol extraction and ethanol precipitation are not required, and high-quality plasmid DNA is eluted in a small volume of Elution Buffer.

Kit Components

Cat. No. Reagents	K-1000 (50 prep.)
Spin column	50 ea
Buffer PR	20 ml
Buffer PL	20 ml
Buffer PN	20 ml
Buffer PO	20 ml
Buffer PW	10 ml
Buffer PE	10 ml
RNase A Solution (10 mg/ml)	200 µl

Before you begin

- ► Add RNase A Solution to Buffer PR, mix, and store at 4°C.
- Add ethanol to Buffer PO before use.
- \rightarrow Add 12 ml (K-1002: 21 ml) of absolute ethanol before use.
- ► Add ethanol to Buffer PW before use.
- \rightarrow Add 40 ml (K-1002: 60 ml) of absolute ethanol before use.
- Check Buffer PL and PN before use for salt precipitation.

Note: Redissolve any precipitation by warming to 50°C.

Do not shake Buffer PL vigorously.

Experimental Protocol

Generbio

- Growth of bacterial culture in tubes or flasks.
 - * Harvest the bacterial cells by centrifugation at 8,000 rpm in a conventional, table-top microcentrifuge for 3 min at room temperature.
- 1. Resuspend pelleted bacterial cells in 250 μ of Buffer PR and transfer to a microcentrifuge tube.

The bacterial cell should be resuspended completely by vortexing and pipetting.

- 2. Add 250 # of Buffer PL and gently mix by inverting the tube 4 ~ 6 times.
 Incubate at room temperature for less than 5 min. Do not vortexing. Vortexing may case shearing of genomic DNA.
- 3. Add 350 # of Buffer PN and mix immediately and thoroughly by gently inverting the tube 4 ~ 6 times. Do not vortexing. To avoid localized precipitation, mix the solution thoroughly, immediately after addition of Buffer PN.
- **4.** Centrifuge for 10 min at maximum speed in a table-top-microcentrifuge. A compact white pellet will form.
- **5. Transfer the supernatant to the Spin column by decanting or pipetting.** Avoid the white precipitation co-transferring into the Spin column.
- 6. Centrifuge for 30 ~ 60 sec. Pour out the filtrate and re-inserting the Spin column to the collection tube.
- 7. (Optional step) Add 500 µl Buffer PO and centrifuge for 30 sec. This step is only required when using endA⁺ or other bacteria strains with high nuclease activity or carbohydrate content.
- **8.** Add 700 *µ* Buffer PW and centrifuge for 30 sec. Pour out the filtrate and re-inserting the Spin column to the collection tube.
- Centrifuge for an additional 1 ~ 2 min to remove residual wash buffer.
 Residual ethanol of washing buffer may inhibit subsequent enzymatic reactions.
- 10. Transfer the Spin column into a clean 1.5 ml microcentrifuge tube (Not provided).
- 11. Add 50 μ of Buffer PE (10mM Tris-HCl, pH 8.5) or deionized distilled water, let stand for 1 min and centrifuge for 1 min.